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A second-order accurate difference scheme is developed to study
cavitation in unsteady, one-dimensional, inviscid, compressible
flows of water with gas. The scheme can capture shock waves,
interfaces separating gas and water, as well as cavitation zones that
are modelled as vacuum states, and it takes into account water’s
capability to resist tensile stresses. As an extended version of the
standard MUSCL scheme, this scheme is based on the solutions of
local gas–water–vacuum initial value problems. In order to prevent
the computed water density from becoming lower than its minimum
bound, additional techniques are introduced. Numerical results are
presented with gas–water Riemann problems to demonstrate the
performance of the scheme. The scheme is also applied to simulate
the cavitation process of the flow in a water shock tube. Q 1996

Academic Press, Inc.

1. INTRODUCTION

Fluid-flows with cavitation are of practical importance.
One example is the flow generated by an underwater explo-
sion near the sea surface. Explosion in water has already
been investigated in a number of previous studies. Sedov
[1] derived analytical solutions to underwater explosions.
Cole [2] studied the phenomenon both theoretically and
experimentally. A survey of these early studies was given
by Holt [3]. Numerical methods, such as the method of
characteristics and shock fitting [4, 5], have also been used
to understand explosions in water that were usually beyond
the reach of analytical methods. More recently, the Glimm
scheme was applied to calculate the initial stage of the
flow due to an explosion in shallow water [6], and a first-
order accurate difference scheme was proposed to predict
the one-dimensional motion of a continuum with cracks
[7]. A further task on simulating such flows would be the
development of numerical methods with high accuracy, as
well as the capacity to capture gas–water interfaces and
cavitation zones.

The flow in a water shock tube, designed to calibrate

sensors for transient explosion pressure, was generated by
an explosion of a small amount of dynamite [8] and was
simulated numerically to clarify certain peculiar features
observed in experiments [9]. In the simulation, the flow
was assumed to be one-dimensional, the interface separat-
ing the water and the high pressure gaseous products of
the dynamite was treated as an interior boundary, and, as
a starting trial, a TVNI scheme proposed by Harten [10]
with moving grids was adopted. However, computations
indicated that numerical resolution for shock waves in the
water was diminished due to the smearing of the shock
fronts, and there was a tendency for the onset of cavitation
in the water. It became necessary, as a consequence, to
construct a high-order numerical method with the capabil-
ity of capturing interfaces and resolving regions of flow
cavitation, and, in view of some experiments, the method
should also be able to model the water’s capacity to resist
tensile stresses.

Since the late 1970’s, there have been substantial
achievements in the development of difference schemes
with high resolution for capturing shock waves in inviscid
flows governed by hyperbolic systems of conservation laws.
However, standard shock capturing methods, including
those high resolution schemes, have trouble dealing with
gas–water interfaces. To predict a flow composed of a
gas and water, Eulerian-based difference schemes would
inevitably face the difficulties that arise in mixed-cells, in
which both the gas and water are present. Difficulties are
also encountered in Lagrangian formulation because the
density jumps at the interfaces are large and the equations
of state for the gas and water are totally different. When
vacuum states occur, further difficulties will arise. A vac-
uum is a possible solution state of the Riemann problem
for the ideal gas, and there have been theoretical interests
about it [11, 12]. Nevertheless, a vacuum state is usually
not taken into consideration in numerical computations,
since it is an extreme state and can hardly be realized (see
Gottlieb and Groth [13]). In fact, in the simulation of a
gas flow from rarefied to vacuum state, errors in the form
of numerical oscillations may turn the computed density
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or pressure to negative and thus terminate the computa-
tion. As asserted in a book edited by Babenko [14], it is
impossible in principle to describe a flow from rarefied to
vacuum state in the Lagrangian reference frame.

In his pioneering work [15], Godunov used exact
solutions of local Riemann problems to construct his
famous first-order monotone scheme. Basing it on this
scheme, van Leer established the standard MUSCL
scheme [16], one of the first second-order difference
schemes with high resolution for shock waves. The objec-
tive of the present paper is to develop a second-order
accurate capturing method for inviscid flows with gas–
water interfaces and cavitation zones. However, there
are some difficulties to overcome. First, the standard
MUSCL scheme, originally designed for the flow of a
continuous gas phase, should be extended to the present
case. The extended scheme, called E-MUSCL scheme,
will be presented in a second-order accurate form in the
Lagrangian reference frame. Second, in order to take
the capability for supporting the tensile stresses into
consideration that characterizes the nature of the water,
a new kind of solution to the Riemann problem has to
be constructed. The wave system of this solution does
not fall into any category of the five possible resolved
wave systems of the Riemann problem for the ideal gas.
Third, some recipes named as ‘‘algorithms for lower
bound of density’’ are needed to keep water density
higher than its minimum bound in simulating flows from
a rarefied to a ruptured state. In this paper, it is proven
that the solution to the gas–water–vacuum Riemann
problem with given initial conditions exists uniquely, and,
if the solution contains no vacuum, the iterative procedure
we employ, similar to the one used by Flores and Holt
[6], converges to the solution. It is also shown that the
time derivatives involved in construction of the E-
MUSCL scheme have unique solutions. Yet, similar to
the method of [6], our approach can capture gas–water
interfaces. Furthermore, the latter possesses second-order
accuracy in general and, as the local Riemann problems
we adopt may have solutions containing vacuum states,
it can handle a flow with multiple vacuum zones.

This paper is organized as follows: Governing equations
and a cavitation model are presented in Section 2. In
Section 3, it follows the discussions of the relevant
Riemann problems and the existance and uniqueness of
their solutions. These solutions are solved with an exact
Riemann solver. In Section 4, formulas for the time
derivatives of intermediate solution states are presented.
Then in Section 5, a description of the basic algorithm
for the E-MUSCL scheme is given. Section 6 contains
the algorithms for lower bound of density. In Section
7, numerical solutions to gas–water Riemann problems
are displayed to demonstrate the accuracy and high
resolution of the method proposed in this paper. Also

in this section, the unsteady flow in the water shock
tube is simulated, and some discussions on its interesting
phenomenon related to cavitation are then presented.

2. GOVERNING EQUATIONS AND
CAVITATION MODEL

In Lagrangian coordinates the one-dimensional equa-
tions of motion for an inviscid, non-heat-conducting fluid
can be written in conservation form

­U
­t

1
­F(U)

­r
5 0, (2.1)

where

U 5 (V, u, E), F(U) 5 (2u, P, uP). (2.2)

Here the independent variables are the time t and the mass
coordinate r. V 5 rref./r, P 5 p/rref. , E 5 e 1 u2/2, where
rref. is a reference density. The dependent variables are
the density r, the velocity u, the pressure p, and the internal
energy e. Here, r is related to the space coordinate x by

r 5
1

rref.
Ex

0
r(t, h) dh. (2.3)

For an ideal gas we may write

p 5 (c 2 1)er, (2.4)

where c is the ratio of the specific heats. For water, when
pressure is less than 3 3 109 Pa, Tait equation reads
(see [17])

p
pa

5 kSS r

ra
Da

2 1D1 1, k 5 3045, a 5 7.15, (2.5)

where the subscript a refers to standard atmospheric condi-
tions; (2.5) implies that pressure does not have a relation
to specific entropy. In fact, when pressure becomes quite
high, its effect cannot be neglected. We assume that (2.5)
holds unless inside cavitation regions.

Cavitation, which is the disruption of what would other-
wise be a continuous water phase by the presence of gas
or vapor or both, may appear at the region where the
pressure drops to a certain critical value pv (the subscript
v refers to cavitation conditions). The criterion may be
affected by the velocity, purity, temperature, etc., and it
measures the capability of the water to resist the tensile
stresses. Water’s incapability of supporting the tensile
stresses is a well-judged engineering assumption. However,
Experimental results in [18] show that water may sustain
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stationary tensile stresses from 21.3 3 106 Pa up to 21.6 3
107 Pa, and transient tensile stresses from 28.1 3 105 Pa
up to 23.7 3 106 Pa. As a result, pv c 0 for water. A
cavitation zone is three-dimensional with internal pressure
due to the presence of the gas and vapor. For simplicity,
we make the hypotheses: (1) pv is a parameter and water
cavitates as pressure diminishes to it; (2) the gas and vapor
in a cavitation zone are ignored and this zone is regarded
as a vacuum. Accordingly, we modify (2.5) to

p
pa

5 5kSS r

ra
Da

2 1D1 1, r . rv ,

0, r # rv ,

(2.6)

where rv is the density corresponding to pv . In view of
the above hypotheses, water ruptures as soon as pressure
diminishes to pv , and a water segment lying between cavita-
tion zones will move freely without force acting on each
of its ends. When such a segment collides with another
one, the cavitation zone between them collapses and van-
ishes. This cavitation model has also been employed by
other authors [19]. However, the model is not precise. For
instance, the gas and vapor in a cavitation zone may induce
some dynamic responses, such as the cavitation decaying
in such a way that its size decreases in an oscillatory man-
ner. Since the cavitation model ignores the presence of gas
and vapor, it cannot simulate this process. We should also
notice that in reality the behaviour of either the gas or the
water near a vacuum state departs significantly from those
described by (2.4) or (2.6). As a consequence, governing
equations for water phase consists of (2.6) and the first
two equations in (2.1). Hence there are only two coupled
nonlinear differential equations in water, while in the gas
phase there are three. Additionally, the fact that gas cannot
sustain tensile stresses will be treated as pv 5 0 for gas.

3. RIEMANN PROBLEM AND ITS SOLUTION

3.1. Resolution of the Riemann Problem

The governing equations (2.1) are a hyperbolic system
of conservation laws. We will discuss the Riemann problem
of (2.1), or the initial value problem for the system (2.1)
with initial conditions given by the step function

Ut50 5HHl , r , 0,

Hr , r . 0,
(3.1)

where H 5 (V, u, P), the subscripts l and r denote the left
and right side of r 5 0, respectively, and the medium to
the left and right of r 5 0 may be water or gas, or may be
a vacuum zone. A Riemann problem of a hyperbolic system

comprised by n scalar conservation laws in n unknowns
has a solution that consists of n 1 1 constant states con-
nected by n centered waves, provided that initial values
on one side of initial discontinuity belong to a neighbor-
hood of the ones on the other side [20]. The above gas–
water–vacuum Riemann problem is classified into four
categories and its solution will be discussed as follows:

1. Gas–Gas. There is gas on either side of r 5 0. Based
on the initial conditions, there are five possible resolutions
for the gas–gas Riemann problem. It can be proven that
the resolution to the Riemann problem with given initial
conditions is unique in the class of centered shocks, rarefac-
tion waves, and contact discontinuities separating constant
states, if and only if

ur 2 ul ,
2

c 2 1
(CglVl 1 CgrVr). (3.2)

Here C is the Lagrangian sound speed defined by

C2 ; 2
­P
­V

(3.3)

and, accordingly,

C2
g 5

cP
V

, C2
w 5

kaparref.
a21

ra
aVa11 , (3.4)

where the subscript g stands for the gas and w for the
water. If (3.2) is violated, a vacuum state will take place.
Investigation shows that a vacuum can be bounded only by
rarefaction waves. For details about the gas–gas Riemann
problem; cf. [21, 12]. The Godunov scheme [15] and the
MUSCL scheme [16] are based upon solutions without
vacuum states to this Riemann problem.

Resolution 1. Under the restriction of (3.2), the solu-
tion to the gas–gas Riemann problem for (2.1) with (3.1)
consists of four constant states connected by three centered
waves (from the left to the right): a shock wave or a rarefac-
tion wave, contact discontinuity, and a shock wave or a
rarefaction wave. If the restriction is violated, the solution
consists of a constant state, a rarefaction wave, a vacuum
zone, a rarefaction wave, and a constant state.

2. Water–Water. Resolutions to this Riemann problem
are somewhat different from those of above gas–gas Rie-
mann problem. In the water–water Riemann problem, a
resolution without a vacuum state has no contact disconti-
nuity. When a vacuum takes place in the resolution, further
difference may arise. If initial pressure on each side of
r 5 0 is positive, the vacuum will be located between two
rarefaction waves. Nevertheless, if the initial pressure is
negative, i.e., water can resist tensile stresses as indicated
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in Section 2 (pv , 0), this resolution should have a different
pattern. The water phase located next to the vacuum has
zero pressure and, since pressure at a rarefaction wave
front should be higher than that at its tail, it cannot be
connected with the initial water state with negative pres-
sure by a centered rarefaction wave. Instead, it can be
connected with the initial state by a centered shock wave.
For this reason, we have to construct a new kind of resolu-
tion: a vacuum zone is located between two shocks. In the
resolution, water pressure increases from negative to zero
across a shock. The formulas of this newly constructed
resolution are given in the following (3.19), and its wave
system is different from each of the five possible resolved
wave systems of the gas–gas Riemann problem. Conse-
quently, if a resolution of the water–water Riemann prob-
lem has a vacuum zone, the vacuum zone lies either be-
tween rarefaction waves or between shocks. It should be
noted that although the pressure on a water surface adja-
cent to a vacuum zone equals zero, density there is not
zero. A (3.2)-like inequality is now given as

ur 2 ul ,
2

a 2 1
(CwlVl 1 CwrVr) 2

4
a 2 1

CwvVv . (3.5)

The resolution of the initial discontinuity (3.1) now be-
comes

Resolution 2. If the condition of (3.5) is fulfilled, the
solution to the water–water Riemann problem for (2.1)
with (3.1) consists of three constant states connected by
two centered waves: a shock wave or a rarefaction wave,
and a shock wave or a rarefaction wave. If the condition
is violated, it consists of a constant state, a shock wave or
a rarefaction wave, a constant state with zero pressure, a
vacuum zone, a constant state with zero pressure, a shock
wave or a rarefaction wave, and a constant state.

3. Gas–Water. Gas and water are located on the left
and right sides of r 5 0, respectively. Consider an interface
G separating gas and water. We use the system (2.1) to
obtain Rankine–Hugoniot conditions,

WG(V2 2 V1) 1 (u2 2 u1) 5 0, (3.6a)

WG(u2 2 u1) 2 (P2 2 P1) 5 0, (3.6b)

WG(E2 2 E1) 2 (u2P2 2 u1P1) 5 0, (3.6c)

where the subscripts 6 represent the left and right sides
of G, respectively, and WG is the Lagrangian speed of the
interface. Actually, WG 5 0 in that location of G remains
the same in Lagrangian coordinate r. It is readily seen that

V2 . V1 , u2 5 u1 , P2 5 P1 (3.7)

satisfies (3.6), and this indicates that both velocity and
pressure are continuous across the interface. It can be
verified that G is a contact discontinuity defined by Lax
[20]. The inequality

ur 2 ul ,
2

c 2 1
CglVl 1

2
a 2 1

(CwrVr 2 Cw0V0) (3.8)

is a criterion, where the subscript 0 refers to zero pres-
sure conditions.

Resolution 3. Under the condition of (3.8), the solution
to the gas–water Riemann problem for (2.1) with (3.1)
consists of four constant states connected by three centered
waves: a shock wave or a rarefaction wave, a contact dis-
continuity, and a shock wave or a rarefaction wave. If (3.8)
is not satisfied, it consists of a constant state, a rarefaction
wave, a vacuum zone, a constant state with zero pressure,
a shock wave or a rarefaction wave, and a constant state.

4. Water or Gas–Vacuum. Water or gas and a vacuum
zone are located on the left and right side of r 5 0, respec-
tively. As we intend to develop a scheme for a flow with
vacuums, the situation that initial conditions (3.1) contain
a vacuum state has to be considered. A good discussion
about the gas–vacuum Riemann problem was given by Liu
and Smoller [12]. For the gas–vacuum Riemann problem,
Hr is (y, ur , 0), in which ur takes a value that enables Hr

to be connected with Hl by a centered rarefaction wave.
For the water–vacuum Riemann problem, we set Hr as
(V0 , ur , 0). If Pl $ 0 (or if initial water pressure is nonnega-
tive), ur is so chosen that Hr connects with Hl by a centered
rarefaction wave. If Pl , 0 (or if initial pressure in water
is negative), ur is so chosen that Hr connects with Hl by
a shock, and this is in agreement with the above newly
constructed resolution.

Resolution 4. The solution to the Riemann problem
for (2.1) with the initial conditions (3.1) that contain a
vacuum zone consists of: (a) water (Pl $ 0)–vacuum, a
constant state, a rarefaction wave, a constant state with
zero pressure, and a vacuum zone; (b) water (Pl , 0)–
vacuum, a constant state, a shock wave, a constant state
with zero pressure, and a vacuum zone; (c) gas–vacuum,
a constant state, a rarefaction wave, and a vacuum zone.

According to the above discussions we now have

PROPOSITION 3.1. The resolution of the Riemann prob-
lem for (2.1) with initial conditions (3.1) has four possible
cases: Resolution 1, Resolution 2, Resolution 3, or Resolu-
tion 4.

Resolutions 1–4 may contain vacuum states. For this
reason, the method presented in this paper can describe the
occurrence, development, and disappearance of cavitation
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zones. The four resolutions are weak solutions to (2.1) and
(3.1), and the formulas for these solutions will be given
as follows.

3.2. Solution to the Riemann Problem

First, we consider the solution without a vacuum to the
Riemann problem (2.1) and (3.1). R-H conditions in water
give the relations between pre- and postshock physical
variables as

6Ww(V* 2 Vs) 1 (u* 2 us) 5 0, (3.9a)

6Ww(u* 2 us) 2 (P* 2 Ps) 5 0. (3.9b)

Here the asterisks refer to postshock values, the subscript
s stands for l or r, 6Ww are the Langrangian shock speeds
in water, the signs 6 refer to the propagation direction of
a wave, in this case the shock, (3.9) yields

u* 2 us 5 6
P* 2 Ps

Ww
, (3.10a)

Ww 5 Ï(P* 2 Ps)(Vs 2 V*) . (3.10b)

It follows from (3.10b) and (2.6) that

lim
P*RPs10

Ww 5 Cws . (3.10c)

For a rarefaction wave in water, since the Riemann invari-
ants of (2.1) are constant along characteristics, one has

u* 6 S2E c
r

drD*
5 us 6 S2E c

r
drD

s
, (3.11)

where c is the spatial sound speed defined by

c ; Ï(­p/­p)S 5 CV, (3.12)

in which capital S refers to the entropy. With the aid of
(2.5), (3.11) may be written as

u* 2 us 5 6
2VsCws

a 2 1 SV*C*w
VsCws

2 1D. (3.13)

By virtue of jump conditions across a shock wave in gas,
we obtain

u* 2 us 5 6
P* 2 Ps

Wg
, (3.14a)

Wg 5 Cgs Ï[(c 1 1)P* 1 (c 2 1)Ps]/2cPs, (3.14b)

lim
P*RPs10

Wg 5 Cgs . (3.14c)

For a rarefaction wave in gas, using (3.11) and the isen-
tropic relation

P*

r*c
5

Ps

rc
s
, (3.15)

we get

u* 2 us 5 6
2VsCgs

c 2 1 SSP*
Ps
D(c21)/2c

2 1D. (3.16)

Combining Eqs. (3.10a), (3.13), (3.14a), and (3.16), we have

u* 2 us 5 6 f (us , Ps , P*), (3.17a)

f (us , Ps , P*) 5Hfw(us , Ps , P*), in water,

fg(us , Ps , P*), in gas,
(3.17b)

where

fw(us , Ps , P*)

5 5
2VsCws

a 2 1 SV*C*w
VsCws

2 1D, Pv , P* # Ps ,

P* 2 Ps

Ww
, P* . Ps ,

(3.17c)

fg(us , Ps , P*)

5 5
2VsCgs

c 2 1 SSP*
Ps
D(c21)/2c

2 1D, Pv , P* # Ps ,

P* 2 Ps

Wg
, P* . Ps .

(3.17d)

Second, we turn to consider the solution with a vacuum
to the Riemann problem for (2.1) with (3.1). For a water–
vacuum Riemann problem, if water pressure is initially
higher than zero, according to Resolution 4, there will be
a rarefaction wave that propagates away from the vacuum.
The resolved state behind the rarefaction wave is

V* 5 V0 ,

u* 2 us 5 6
2VsCws

a 2 1 SV0Cw0

VsCws
2 1D, (3.18)

P* 5 0.

If that pressure is lower than zero, a shock wave will move
away from the vacuum, and the postshock values are
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V* 5 V0 , u* 2 us 5 6
2Ps

Wwv
, P* 5 0, (3.19a)

Wwv 5 Ï2Ps/(Vs 2 V0). (3.19b)

For a gas–vacuum Riemann problem, a rarefaction wave
will propagate away from the vacuum, and at the tail of
the rarefaction wave,

V* 5 y, u* 2 us 5 6
22VsCgs

c 2 1
, P* 5 0. (3.20)

3.3. Existance and Uniqueness of the Solution for
Riemann Problem

Eliminating u* from (3.17a) yields

f (ul , Pl , P*) 1 f (ur , Pr , P*) 2 (ul 2 ur) 5 0. (3.21)

We define

F1(P) ; f (ul , Pl , P) 1 f (ur , Pr , P) 2 (ul 2 ur). (3.22)

Whether there is a unique solution to (3.21) depends on
whether F1(P) has a unique zero point or not. We will see
that F1(P) is a monotonically increasing function passing
through zero point once and only once, i.e., (3.21) has a
unique solution.

It is known from (3.17) that

lim
PRPs20

f (us , Ps , P) 5 lim
PRPs10

f (us , Ps , P) 5 0. (3.23)

By some straightforward calculations we have

dfw(us , Ps , P)
dP

5 5
1

Cw
, Pv , P # Ps ,

1
2 SWw

C2
w

1
1

Ww
D, P . Ps ,

(3.24a)

dfg(us , Ps , P)
dP

5 5
1

Cgs
SP

Ps
D2(c11)/2c

, Pv , P # Ps .

W2
g 1 C2

gs

2W3
g

, P . Ps .

(3.24b)

It is easy to verify that

lim
PRPs20

dfw(us , Ps , P)
dP

5 lim
PRPs10

dfw(us , Ps , P)
dP

5
1

Cws
, (3.24c)

lim
PRPs20

dfg(us , Ps , P)
dP

5 lim
PRPs10

dfg(us , Ps , P)
dP

5
1

Cgs
. (3.24d)

We may also have

d2fw(us , Ps , P)
dP2 5 (3.25a)

52
a 1 1
2VC3

w
, Pv , P # Ps ,

2
a 1 1

2VWwC2
w

, P . Ps ,

d2fg(us , Ps , P)
dP2 5 (3.25b)

52
c 1 1

2VsC3
gs
SP

Ps
D2(3c11)/2c

, Pv , P # Ps .

2
(c 1 1)(W2

g 1 3C2
gs)

8VsW5
g

, P . Ps .

To obtain the second branch in (3.25a), we assume that
uV 2 Vsu ! 1, i.e., the change of water density is small.
This assumption coincides with the premise for (2.5); (3.25)
gives rise to

lim
PRPs20

d2fw(us , Ps , P)
dP2 (3.25c)

5 lim
PRPs10

d2fw(us , Ps , P)
dP2 5 2

a 1 1
2VsC3

ws
,

lim
PRPs20

d2fg(us , Ps , P)
dP2 (3.25d)

5 lim
PRPs10

d2fg(us , Ps , P)
dP2 5 2

c 1 1
2VsC3

gs
.

Now we conclude from (3.22), (3.17), (3.23), (3.24), and
(3.25) that

LEMMA 3.1. F1(P) is a continuous and monotonically
increasing function of P, both its first and second derivatives,
remaining positive and negative, respectively, are also con-
tinuous.

Equation (3.21) may be solved by the Newton method
that is convergent of order 2, namely,

P(n11) 5 P(n) 2 S F1(P)
dF1(P)/dPD(n)

, (3.26a)

where

P(0) 5 Pv (3.26b)
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or

P(0) 5
PlCr 1 PrCl 1 (ul 2 ur)ClCr

Cl 1 Cr
. (3.26c)

Here the superscript (n) refers to the nth iteration.

THEOREM 3.1. (i) In the class of centered shocks and
rarefaction waves and contact discontinuities, the solution
to the Riemann problem for (2.1) with (3.1) exists uniquely;

(ii) If the solution contains no vacuum, the iteration
process (3.26a) with the initial value (3.26b) converges to
the solution.

Proof. (i). According to Proposition 3.1, the solution
to the Riemann problem is a combination of centered
shocks and rarefaction waves and contact discontinuities.
First, consider the case that the solution contains no vac-
uum state. Let

F2(P) ; f (ul , Pl , P) 1 f (ur , Pr , P). (3.27)

Since there is no vacuum state, (3.2) or (3.5) or (3.8) holds,
i.e., in terms of (3.27),

ul 2 ur . F2(Pv)

55
5 2(VvCwv 2 VlCwl)/(a 2 1)

12(VvCwv 2 VrCwr)/(a 2 1), water–water,

5 22VlCgl/(c 2 1)

12(V0Cw0 2 VrCwr)/(a 2 1), gas–water,

5 22(VlCgl 1 VrCgr)/(c 2 1), gas–gas.

(3.28)

Because of (3.22) and (3.27), (3.28) gives rise to

F1(Pv) , 0. (3.29)

The definition of F1(P) yields

F1(y) 5 y . 0. (3.30)

By Lemma 3.1, it is known that F1(P) is a monotonically
increasing function. As a result, F1(P) passes the zero point
once and only once; i.e., there is always a unique P* satis-
fying (3.21), hence a unique u* and V* that are explicitly
given by (3.17) and some other formulas, herein P* [
(Pv , y). Therefore, in the case of having no vacuum, the
solution to the Riemann problem exists uniquely.

Second, if there is a vacuum in the solution, P*, u*, and
V* are determined by (3.18)–(3.20). Consequently, the
solution also exists uniquely.

(ii). Consider an interval (Pv , M), where M is a suffi-
ciently large constant so that F1(M) . 0 and P* [ (Pv ,
M). We conclude from (3.29), (3.30), and Lemma 3.1 that
(1) F1(Pv)F1(M) , 0; (2) dF1(P)/dP ? 0; (3) dF 2

1(P)/dP2

stays negative; and (4) (F1(P) ? dF 2
1(P)/dP2)P5Pv

. 0. It
can be proven that the iteration (3.26a) with the initial
value Pv will surely converge to its fixed point (see [22]):

lim
nRy

P(n) 5 P*. (3.31)

This completes the proof of Theorem 3.1.

4. TIME DERIVATIVES FOR RESOLVED STATE

Consider the initial value problem for the system (2.1)
with initial data

Ut50 5HQl(r), r , 0,

Qr(r), r . 0.
(4.1)

Here Q(r) 5 (V(r), u(r), P(r)), each component of Ql(r)
and Qr(r) is a linear function of r. The medium to the left
and right of r 5 0 may be water or gas, or may be a vacuum
zone. The time derivatives (­V/­t)*, (­u/­t)*, and (­P/
­t)* of the resolved state at r 5 0 of the Riemann problem
in the last section equal zero. But, this is no longer true
in the gas–water–vacuum initial value problem for (2.1)
with (4.1), and these time derivatives have to be deter-
mined.

We begin with the solution without a vacuum to the
above initial value problem. Differentiating (3.9b) along
the direction of 6Ww yields

6DWw(u* 2 us) 6 Ww((Du)* 2 (Du)s)
(4.2)

2 (DP)* 1 (DP)s 5 0,

where D 5 ­/­t 6 Ww­/­r, being a total differential opera-
tor. By the aid of (2.1) and (3.10b), it is derived from
(4.2) that

S W 3
w

2C*2
w

1
3Ww

2 DS­u
­tD*

6 S2
3W 2

w

2C*2
w

2
1
2DS­P

­t D*

(4.3)

5 6S3W 2
w

2
1

C 2
ws

2 DS­u
­rDs

2 S W 3
w

2C 2
ws

1
3Ww

2 DS­P
­rDs

.

Equation (4.3) is the formula for time derivatives of the
resolved state behind a shock wave in water. For the case
of a rarefaction wave in water, writing an equation in a



a11 , a21 55
W 3

w/(2C*2
w ) 1 3Ww/2, shock in water,

W 2
wr/C*w 1 Wwr , rarefaction wave in water,

(c 1 1)Wg(V* 2 Vs)/(4Vs) 1 2Wg , shock in gas,

W 2
gr/C*g 1 Wgr , rarefaction wave in gas,

(4.8b)

form similar to (3.9b),

6Wwr(u* 2 us) 2 (P* 2 Ps) 5 0, (4.4a)

in which Wwr is defined as

Wwr ;
uP* 2 Psu
uu* 2 usu

5
(a 2 1)(P* 2 Ps)

2(V*C*w 2 VsCws)
, (4.4b)

where

lim
P*RPs20

Wwr 5 Cws , (4.4c)

we may also have

SW 2
wr

C*w
1 WwrDS­u

­tD*
6 S2

Wwr

C*w
2

W 2
wr

C 2
ws
DS­P

­t D*

(4.5)

5 6(W 2
wr 1 CwsWwr)S­u

­rDs
2 SW 2

wr

Cws
1 WwrDS­P

­rDs
.

In a gas flow, we obtain

S(c 1 1)Wg(V* 2 Vs)
4Vs

1 2WgDS­u
­tD*

6S2
W 2

g

C*2
g

2
(c 1 1)(V* 2 Vs)

4Vs
2 1DS­P

­t D*

5 6S2
W 2

g(V* 2 Vs)
2Vs

2
(c 2 1)C 2

gs(V* 2 Vs)
4Vs

(4.6)

1 W 2
g 1 C 2

gsDS­u
­rDs

1S(c 2 1)Wg(V* 2 Vs)
4Vs

1
W 3

g(V* 2 Vs)
2VsC 2

gs
2 2WgDS­P

­rDs
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for the time derivatives behind a shock wave and

SW 2
gr

C*g
1 WgrDS­u

­tD*
6 S2

Wgr

C*g
2

W 2
gr

C 2
gs
DS­P

­t D*

5 6S2S1 2
Wgr

C*g
D C 2

gsP*
Ps

1
(c 1 1)(P* 2 Ps)

2Vs

1 W 2
gr 1 C 2

gsDS­u
­rDs

(4.7a)

1SS1 2
Wgr

C*g
DWgrP*

Ps
2

(c 1 1)Wgr(P* 2 Ps)
2VsC 2

gs

2 2WgrDS­P
­rDs

for the time derivatives behind a rarefaction wave. Here

Wgr ;
uP* 2 Psu
uu* 2 usu

5
(c 2 1)P(c21)/2c

s (P* 2 Ps)

2VsCgs(P*(c21)/2c 2 P(c21)/2c
s )

, (4.7b)

lim
P*RPs20

Wgr 5 Cgs . (4.7c)

(4.6) and (4.7a) are different from those obtained by van
Leer [16] under the restriction of uCgs 2 C*g u ! 1. In our
deduction the restriction is not imposed and no term has
been neglected.

Two formulas among (4.3) and (4.5)–(4.7a), one for a
wave facing the right and the other for that facing the left,
comprise the following linear algebraic system for time
derivatives at r 5 0 resulting immediately after resolution
of the initial discontinuity (4.1),

Sa11 2a12

a21 a22
D1S

­u
­tD*

S­P
­t D*25Sb1

b2
D, (4.8a)

where
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3W 2

w/(2C*2
w ) 1 1/2, shock in water,

Wwr/C*w 1 W 2
wr/C 2

ws , rarefaction wave in water,

W 2
g/C*2

g 1 (c 1 1)(V* 2 Vs)/(4Vs) 1 1, shock in gas,

Wgr/C*g 1 W 2
gr/C 2

gs , rarefaction wave in gas,

(4.8c)

309SCHEME TO STUDY CAVITATION IN FLOWS

and b1 , b2 are linear functions of (­u/­t)s and (­P/­t)s .
Noticing (3.10c), (3.14c), (4.4c), and (4.7c), it is not difficult
to verify that ak,m . 0 (k, m 5 1, 2) in case of c # 3. Then

DET(ak,m) 5 a11a22 1 a12a21 . 0. (4.9)

On the basis of linear algebra, (4.9) gives the following re-
sults.

ASSERTION 3.1. Under the restriction of c # 3, the solu-
tion of (4.8a) exists uniquely.

If (­u/­t)s 5 (­P/­t)s 5 0, then b1 5 b2 5 0 and (­u/
­t)* 5 (­P/­t)* 5 0. This situation corresponds to the case
of the first-order Godunov scheme. On determining (­P/
­t)*, (­V/­t)* is given as

S­V
­t D*

5
1

C*2
S­P

­t D*
. (4.10)

We now consider the solution with a vacuum state to
the initial value problem for (2.1) with (4.1). Since density
keeps constant and pressure is always zero on a gas or
water surface adjoining a vacuum, we have

S­V
­t D*

5 S­P
­t D*

5 0. (4.11)

But, velocity there may change with time. If pressure is
initially higher than zero on a water surface adjacent to a
vacuum, it follows from (3.18) that

SW 2
wrv

2C 2
w0

1 WwrvDS­u
­tD*

5 6(CwsWwrv 1 W 2
wrv)S­u

­rDs
(4.12a)

2 SWwrv 1
W 2

wrv

Cws
DS­P

­rDs
,

Wwrv ;
uPsu

uu* 2 usu
5

(a 2 1)(2Ps)
2(V0Cw0 2 VsCws)

. (4.12b)

If the pressure is lower than zero, (3.19a) holds and it gives

SW 3
wv

2C 2
w0

1
3Wwv

2 DS­u
­tD*

5 6S3W 2
wv

2
1

C 2
ws

2 DS­u
­rDs

(4.13)

2 SW 3
wv

2C 2
ws

1
3Wwv

2 DS­P
­rDs

.

At the tail of a rarefaction wave by which a gas constant
state is connected with a vacuum, (3.20) gives

S­u
­tD*

5 6
(3c 2 1)Cgs

2c S­u
­rDs

2
3c 2 1

2c S­P
­rDs

. (4.14)

5. E-MUSCL SCHEME

Consider a fluid slab (ri , ri11) in which V, u, and P are
smooth. Integrating the first equation in (2.1) over the slab
and a time step with the use of Green formula results in

Eri11

ri

Vn11dr 5 Eri11

ri

Vndr 1 Etn11

tn
u*(i11)2dt

(5.1)

2 Etn11

tn
u*i1 dt.

In the slab, V is approximated by a linear distribution

Vapprox. 5 Vi11/2 1
Di11/2V
Di11/2r

(r 2 ri11/2),
(5.2a)

ri , r , ri11 ,

where

Vi11/2 ; 1
Di11/2r

Eri11

ri

Vapprox. dr, (5.2b)

and ri11/2 5 (ri11 1 ri)/2, Di11/2r 5 ri11 2 ri , Di11/2V 5
V*(i11)2 2 V*i1 . Di11/2V is the slope of V in the slab. It
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follows from (5.1) that

Vn11
i11/2 5 Vn

i11/2 1 ln11/2
i11/2 (kul(i11)2 2 kuli1)

(5.3a)
1O((Dn11/2t)3, Dn11/2t(Di11/2r)2),

where

kul 5 u*n 1
1
2 S­u

­tD*n

Dn11/2t, (5.3b)

ln11/2
i11/2 5 Dn11/2t/Di11/2r, and Dn11/2t 5 tn11 2 tn, being the

time step at tn. Omitting higher order terms in (5.3a), it is
obtained that

Vn11
i11/2 5 Vn

i11/2 1 ln11/2
i11/2 (kul(i11)2 2 kuli1). (5.4)

Similarly, the followings are obtained by using the other
two equations in (2.1),

un11
i11/2 5 un

i11/2 2 ln11/2
i11/2 (kPl(i11)2 2 kPli1), (5.5)

En11
i11/2 5 En

i11/2 2 ln11/2
i11/2 (kul(i11)2kPl(i11)2

(5.6)
2 kuli1kPli1),

where each notation stands for a meaning similar to that
given in (5.4).

In ideal gas

P 5
c 2 1

V SE 2
u2

2 D. (5.7a)

Integrating (5.7a) and (2.6) and then omitting higher order
terms, we obtain for the gas phase the sufficiently accu-
rate formula

Pi11/2 5
c 2 1
Vi11/2

SEi11/2 2
u2

i11/2

2 D, (5.7b)

and for the water phase,

Pi11/2

5 5
pa

rref.
SkSS rref.

raVi11/2
Da

2 1D1 1D, Vi11/2 , Vv ,

0, Vi11/2 $ Vv .

(5.8)

Here Pi11/2 is defined similarly as Vi11/2 .
We assume that vacuums may and only may appear

between slabs. Since it is impossible to describe vacuum
zones only in a Lagrangian reference frame, we have to

track them in Eulerian coordinates. A vacuum zone at ri

is confined between its left end xi2 and right end xi1 , which
are approximated in third-order accuracy by

xn11
i2 5 xn

i2 1 kuli2Dn11/2t, xn11
i1 5 xn

i1 1 kuli1Dn11/2t. (5.9)

Equations (5.9) can also track a gas–water interface.
In computations, (5.4), (5.5), and (5.8) are used for the

water phase; (5.4), (5.5), (5.6), and (5.7b) are adopted for
the gas phase; while (5.9) is employed to track vacuum
zones. We call (5.4)–(5.7b), (5.8), and (5.9) the E-MUSCL
scheme. This scheme is second-order accurate in view of
margins of the third-order terms omitted in (5.4)–(5.6). Its
accuracy may be affected by a slope limitation, such as a
monotonicity algorithm in [16] or the algorithm for lower
bound of density (6.9) in the next section. The proposed
scheme becomes the first-order accurate Godunov scheme
if all slab slopes are set equal to zero. Equations (5.4)–(5.6)
are similar to the formulas of the Lagrangian steps in the
standard MUSCL scheme [16]. However, on the basis of
the initial value problems discussed in the previous sec-
tions, other than a flow for a gas continuum, (5.4)–(5.6)
are also applicable to a gas–water–vacuum flow. Accord-
ingly, the E-MUSCL scheme presented in this paper con-
tains the standard MUSCL as a special case.

If a vacuum takes place at ri , xi2 and xi1 will take different
values, and they are given by (5.9). If xi2 ? xi1 , the resolu-
tion of an initial discontinuity at ri will belong to Resolution
4 stated in Section 3. When xi2 and xi1 become the same
(when uxi1 2 xi2u # « in practical calculations, « being
positive and sufficiently small), the vacuum at ri van-
ishes, and the resolution will belong to one of the other
three resolutions. Hence, accuracy of the procedure to
track vacuum zones may affect the accuracy of (5.4)–
(5.6). If there is no vacuum state, summations
oi Di11/2rVn

i11/2 , oi Di11/2run
i11/2 , and oi Di11/2rEn

i11/2 are con-
served exactly by (5.4)–(5.6), except for the fluxes at
boundaries. But for a flow with vacuums, oi Di11/2rVn

i11/2

may not be conserved, since kuli2 and kuli1 are not neces-
sarily the same and, thus, they do not cancel each other
in summing up (5.4). Actually, oi Di11/2rVn

i11/2 is an approxi-
mation of eri

max
2

r11
V dr, which, in view of (2.3), equals oi

(x(i11)2 2 xi1), the total length occupied by fluids. Due to
(5.1) and the fact that u*i2 can be different from u*i1 when
there is a vacuum at ri , eri

max
2

r11
V dr may change with time.

In the presence of vacuums the other two summations
are still conserved, because kPli2 5 kPli1 5 0 whenever a
vacuum state occurs at ri .

In order to suppress numerical oscillations, we employ
the limiting technique (101) given in [16]. This technique
requires the linear distribution of a state quantity in a
slab not taking values beyond the average value in its
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neighboring cells, and a slope is set equal to zero if its slab
average is an extremum with respect to its neighboring
averages. Our computations show that the technique is
useful to enable the calculations to go forward, since the
density slope of a water slab, which is usually located near
a shock wave, may be so steep that pressure given by (2.6)
becomes a large number and, thus, leads the computations
to overflow.

For the sake of stability, no waves issuing from two ends
of a slab are allowed to interact with each other; thus
one has

Dn11/2t #
CFLDi11/2r

2Max(uWi1u, uW(i11)2u)
, (5.10a)

where Wi is the speed of either a shock wave or a rarefac-
tion wave front, and CFL # 1, noting that CFL may be
larger than 1 in computations. The following restriction is
imposed to avoid zone-tangling, i.e., the left end of a slab
is not allowed to move across its right end, or vice versa,

Dn11/2t # 2
Dn

i11/2x
Dn

i11/2u
, (5.10b)

where Dn
i11/2u 5 un

(i11)2 2 nn
i1 , 0 and Dn

i11/2x 5 xn
(i11)2 2

xn
i1 . In the presence of vacuums, it is also necessary to

avoid slab overlapping; i.e., it is required that xi1 2 xi2 $ 0.
For this purpose, making use of (5.9) and omitting second-
order terms, we give another restriction on the time step
(u*n

i2 . u*n
i1 ):

Dn11/2t #
xn

i1 2 xn
i2

u*n
i2 2 u*n

i1

. (5.10c)

The algorithm for lower bound of density given in inequal-
ity (6.10) or (6.11b) in the next section will be the additional
set of restriction on the time step.

6. ALGORITHMS FOR LOWER BOUND OF DENSITY

In computations, we require not only Vn11
i11/2 . 0, but also

Vn11
i11/2 , Vv , (6.1)

which is equivalent to

rref.

Vn11
i11/2

. rv , (6.2)

where rref./Vn11
i11/2 may be considered as the computed den-

sity. From the cavitation model described in Section 2, it

is known that rv is the lowest density of a fluid. Therefore,
(6.1) requires that the computed density not be smaller
than rv . Inequality (6.1) always holds for gas, since Vv 5
1y in gas, whereas this is not true for water. Pn11

i11/2 given
by (5.8) will be much lower than pv if Vn11

i11/2 is slightly
higher than Vv . This may cause severe numerical errors
when cavitation lasts for a time comparable to the charac-
teristic time of the computed flow. To calculate accurately
a flow with cavitation zones, the requirement (6.1) should
be satisfied. But, can it be fulfilled by the E-MUSCLE
scheme?

LEMMA 6.1. A sufficient condition for (6.1) is

ln11/2
i11/2 (kul(i11)2 2 kuli1) , Vv 2 Vn

i11/2 . (6.3)

Proof. Making use of (5.4), the proof is obvious.

If 0 , Vn
i11/2 , Vv , (6.3) is true for kul(i11)2 2 kuli1 , 0,

which relates to compression of the cell (ri11 , ri11) and
appears generally as a flow becomes condensed. But, its
violation is possible for kul(i11)2 2 kuli1 . 0, which corre-
sponds to expansion of the cell and usually happens when
a flow is rarefied.

THEOREM 6.1. Suppose

US­u
­tD*n

(i11)2
2 S­u

­tD*n

i1
U, MDi11/2r, (6.4a)

M 5 const $ 0. Then, (6.1) holds, provided

ln11/2
i11/2 Dn

i11/2u , Vv 2 Vn
i11/2 2

M
2

(Dn11/2t)2. (6.4b)

Proof. It follows form (5.4), (6.4a), and (6.4b) that

ln11/2
i11/2 (kuli11 2 kuli) , ln11/2

i11/2 Dn
i11/2u 1

M
2

(Dn11/2t)2

(6.4c)
, Vv 2 Vn

i11/2 ,

which turns out to be (6.3). Then (6.1) follows from
Lemma 6.1.

ASSERTION 6.1. If (6.4b) holds, then

ln11/2
i11/2 Dn

i11/2u , Vv 2 Vn
i11/2 . (6.5)

In order to keep density higher than its minimum bound,
some limiters will be constructed as follows. Consider a
water particle in a slab (ri , ri11) within which the density
is smooth. Let the particle density be rn at time tn. Assume
its density has decreased at time tn11 but still remains higher
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than rv , then

rn11 5 rn 1 S­r

­tDn

Dn11/2t 1 O((Dn11/2t)2) . rv . (6.6)

Using (5.4) and the first equation in (2.1) and omitting
higher order terms, we have

ln11/2
i11/2 Dn

i11/2u , Vn
i11/2S1 2

Vn
i11/2

Vv
D. (6.7)

Inequality (6.7) can guarantee the validity of (6.5), that is,

THEOREM 6.2. Let 0 , Vn
i11/2 , Vv . If (6.7) is satisfied,

then (6.5) holds.

Proof. It follows from (6.7) and the given condition of
0 , Vn

i11/2 , Vv that

ln11/2
i11/2 Dn

i11/2u , Vn
i11/2S1 2

Vn
i11/2

Vv
D

5
Vn

i11/2

Vv
SVv 2 Vn

i11/2D (6.8)

, Vv 2 Vn
i11/2 ,

this completes the proof of the theorem.

Inequality (6.7) may be satisfied in two ways. The first
way is to adjust the velocity slope of each slab. Since in
the E-MUSCL procedure Dn11/2t relates to Dn

i11/2u by
(5.10b) and (5.10c), solving (6.7) needs iterations. To make
it simple, we replace Dn11/2t by Dn21/2t. Then, velocity slope
Dn

i11/2u resulting from the E-MUSCL procedure is modified
by the limiter

(Dn
i11/2u)low1 5 MinSDn

i11/2u, Vn
i11/2

(6.9)

S1 2
Vn

i11/2

Vv
D Di11/2r

Dn21/2tD.

The other way is to restrict the time step,

(Dn11/2t)low2 5 MinSDn11/2t, Vn
i11/2

(6.10)

S1 2
Vn

i11/2

Vv
D Di11/2r

Dn
i11/2u

D,

where Dn
i11/2u . 0, and Dn11/2t is determined by (5.10).

One more limiter can be derived from (6.6). For a resolu-
tion of an initial discontinuity at ri , by using (6.6) and

neglecting higher order terms, it is obtained that

S­V
­t D*n

i6
Dn11/2t , V*n

i6 S1 2
V*n

i6

Vv
D. (6.11a)

We now have

(Dn11/2t)low3 5 MinSDn11/2t,
V*n

i6 (1 2 V*n
i6 /Vv)

(­V/­t)*n
i6

D, (6.11b)

in which (­V/­t)*n
i6 are positive and determined by (4.10),

and Dn11/2t is evaluated according to (5.10).
We call (6.9), (6.10), and (6.11b) the algorithms for lower

bound of density. Their effectiveness will be tested by
numerical experiments presented in Section 7. Theorem
6.2 suggests that (6.7) is a little more stringent than (6.5).
Thus, the algorithms (6.9) and (6.10) may lead to (6.4b)
and, under the assumption of (6.4a), then to (6.1). We also
have the following results about an expanding gas flow.

THEOREM 6.3. Suppose that u and P are sufficiently
smooth within gas slabs. Further assume that kul(i11)2 2
kuli1 , Vn

i11/2 , P*n
i1 1 P*n

(i11)2 . 0. Then the E-MUSCL
scheme gives

Pn11
i11/2 . 0, (6.12a)

provided

Dn
i11/2u ,

(c 2 1)Vn
i11/2Pn

i11/2

ln11/2
i11/2 (P*n

i1 1 P*n
(i11)2)

. (6.12b)

Theorem 6.3 can be proven with the aid of (5.4)–(5.6).
This theorem states that in the simulation of a gas flow
from rarefied to vacuum state, to limit velocity slopes is
also helpful for preventing the pressure updated by the E-
MUSCL scheme from becoming negative.

7. NUMERICAL EXAMPLES

7.1. Application to Gas–Water Riemman Problem

To illustrate the performance of the method described
in this paper, we first compute the gas–water Riemann
problem

Ut50 5HGl , x , 0,

Gr , x . 0,
(7.1)

where G 5 (r, u, p). At initial time, the gas and the water
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are located to the left and right of x 5 0, respectively. There
are six possible resolved wave systems for the gas–water
Riemann problem. Here we show the numerical results of
four wave systems whose initial conditions are respectively

Ut50 5H(50, 8, 4053000), x , 0,

(1000.41282, 5, 1013250), x . 0,
(7.2a)

Ut50 5H(50, 1000, 10132500), x , 0,

(1002.23517, 2100, 5066250), x . 0,
(7.2b)

Ut50 5H(20, 21000, 5066250), x , 0,

(1002.23517, 1000, 5066250), x . 0,
(7.2c)

Ut50 5H(20, 21000, 5066250), x , 0,

(997.64046, 1000, 25066250), x . 0,
(7.2d)

where r, u, and pv 5 0 are respectively in kg/m3, m/s,
and Pa. (7.2c) results in two rarefaction waves moving in
opposite directions and a vacuum zone in-between, and
the resolution of (7.2d) contains a rarefaction wave, a vac-
uum, and a shock wave across which pressure increases
from negative to zero.

In Figs. 1–6, the numerical values are shown by dia-
monds, and the exact solutions are shown by the solid
lines. Numerical solutions for r, u, and p depicted in Fig.
1 agree well with exact solutions. As indicated in Fig. 2,
the computed shocks in gas and water are confined to a
narrow band of about two mesh cells, essentially without
oscillations pre- and postshock waves. In Figs. 3 and 4,
numerical accuracy for rarefaction waves in both water
and gas is satisfactory, and vacuum zones are well resolved.
The numerical results with the Godunov scheme, attained
by setting all slab slopes equal to zero in the E-MUSCL
code, are also given in Figs. 5 and 6. Compared with the
results in Figs. 2, 3, 5, and 6, it is seen that the E-MUSCL
scheme gives better approximations. In the computations,
c 5 2, CFL 5 1, pv 5 0, and there are 50 cells in gas and
50 cells in water, respectively, with an equal grid spacing.

7.2. Prediction of the Flow in Water Shock Tube

The water shock tube is a steel tube with its two ends
sealed. The tube is filled with water, and a small piece of
dynamite is placed at its center. At each end of the tube
a sensor for measuring the explosion pressure is installed,
one being the standard and the other being that to be

FIG. 1. Solutions for (7.2a) at t 5 0.00151.
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calibrated. It is expected that pressure at the end might
behave similarly to that at a wall where a shock in the air
reflects; i.e., it rises suddenly when the blast wave reaches
the end and then decays smoothly with time. However, as
depicted in Fig. 7, experiments indicate clearly that the
end pressure decreases with a pattern of multiple jumps
and drops (the solid line) rather than in a smooth fashion
(the dotted line). Even if an initial pressure of about 200
atm is exerted in the water befor explosion, the jumps and
drops could not be eliminated, and the end pressure would
decrease to a value lower than the initial pressure (see [8]).

The flow in the water shock tube is rather complicated.
To study the early stage of the flow, which lasts for as short
as milliseconds, we assume that: (1) there is an interface
with no Taylor instability between the water and the gaseous
products of the dynamite, and both of them are initially at
rest; (2) the flow is one-dimensional and symmetrical about
the tube center; (3) there is no viscosity and heat conduction
in both the water and the gas, and the tube is rigid. The
computing diagram is sketched in Fig. 8. As the length
occupied by the gas is much smaller than that by the water,

FIG. 2. Solutions for (7.2b) at t 5 0.00093.

FIG. 3. Solutions for (7.2c) at t 5 0.00101. There is a vacuum between
gas and water.

FIG. 4. Solutions for (7.2d) at t 5 0.00105. A vacuum appears between
gas and water.

FIG. 5. The Godunov scheme for (7.2c), t 5 0.00101.

FIG. 6. The Godunove scheme for 7.2d), t 5 0.00101.
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an equal grid spacing is adopted in the gas and, from the
interface, grid spacing is enlarged in geometrical progres-
sion in the water. The total cell number used is 100, four
cells for the gas and 96 cells for the water. According to
the above assumptions and the data proposed in [8], initial
conditions are set as

Ut50 5H70.735, 0, 100692985.3), 0 # x , L1 ,

(1000, 0, 101325), L1 # x # L2 .
(7.3)

L1 should be as short as possible. We chose L1 5 0.001,
L2 5 0.275, and c 5 2. The boundary conditions are

x 5 0, u 5 0,

x 5 L2 , u 5 0.
(7.4)

Numerical results show that, at the beginning, the gas
expands and a shock wave propagates into the water and
then gradually decays in strength as depicted in Figs. 9 and
10. After the shock, which has reflected at the tube end,
reaches the gas–water interface, a low pressure wave in a
V shape (a pressure trough) is formed in the water and
propagates to the right (Fig. 11). In this wave, water is

FIG. 7. Pressure at the end of the water shock tube [8].

FIG. 8. The computing diagram. Owing to symmetry, only the flow
in the right half of the water shock tube is calculated.

FIG. 9. Paths of the gas-water interface (the left line) and the shock
in water (the right line).

FIG. 10. The shock propagates in water and its strength reduces
gradually, t 5 0.00013.

FIG. 11. A low pressure wave is formed near the gas–water interface.
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rarefied and pressure develops lower and lower. At last,
the water at the bottom of the wave ruptures and cavitation
takes place. In Fig. 12, the cavitation zones in x–t plane is
presented, and it is shown that the low pressure wave,
which contains the cavitation zones, goes back and forth
in the water. As illustrated in Figs. 12 and 13, the time
process of pressure at the end consists of many almost
isolated impulses whose occurrences correspond to the
movement of the wave. The first impulse begins when the
shock arrives at the end and terminates abruptly when the
wave touches it. As the low pressure wave propagates away

from there, the second impulse starts. Results in Fig. 13
agree with those of our early work given in Fig. 14 [10].
If the water is capable of supporting tensile stresses, i.e.,
pv , 0, both occurrence and disappearance of a cavitation
zone can generate shocks. As a result, although there are
less cavitation zones, the end pressure behaves in a more
oscillatory manner (Fig. 15, Fig. 16). Hence, we conclude
that it is the low pressure wave that leads an end pressure
to decay with multiple jumps and drops, and the cavitation
process has a significant effect on the resulting flow. It
should be noted that since our computations are based on
a simple one-dimensional model ignoring many secondary
effects, they cannot explain all the features of the flow. In
the computations, CFL 5 1, the algorithm (6.9) and (6.10),
which act only when and where the water cavitates, are
adopted for pv 5 0 and pv , 0, respectively.

We test the effectiveness of the algorithms for the lower
bound of density proposed in Section 6 by calculations
with 6000 time steps and pv 5 25.066 3 106. The lowest
computed pressure of all water slabs and all the time steps
without such an algorithm is 25.219 3 106, lower than pv .

FIG. 12. Cavitation zones, pv 5 0. In the shadows water cavitates.

FIG. 13. Pressure at the end, pv 5 0.

FIG. 14. Pressure at the end obtained with a TVNI scheme, moving
grids, and pv 5 1.013 3 105 [10].
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But by (6.9), (6.10), and (6.11b), these are, respectively,
25.049 3 106, 25.066 3 106, and 25.096 3 106, which are
closer to pv .

8. CONCLUDING REMARKS

The numerical method we propose in this paper, i.e.,
the E-MUSCL scheme, plus the algorithms for the lower
bound of density, is a capturing method for nonlinear gas–
water–vacuum systems, and it can simulate a flow process
from the rarefied to vacuum state. The method has, in
general, second-order accuracy and provides essentially

monotone solutions. The computed results of gas–water
Riemann problems demonstrate that it gives high resolu-
tion for shock waves and contact discontinuities, and good
accuracy for cavitation zones as well. The numerical simu-
lation in Section 7 also helps us to understand the flow
phenomenon inside the water shock tube. It is expected
that the E-MUSCL scheme, with the aid of an operator
splitting technique, may be applied to some cylindrical or
spherical cases, and we shall make these the subjects of
further research.
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